"

AD—AZOS 339

SECURITY CLASIIFICATION OF THIS PAGE (When Date Ertered)

Vs a e e d dns s b s bk

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE oy A3 BuTRECTIONS
L. REPQRT NUMBER }2. GOVT ACCESSION NO. }J3. RECIPIENT'S CATALOG NUMBER
4. TITLE (andSubdtitie) 5. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report: InterAct 15 July 1988 to 1., ™1y 1989
Corporation, Interict Ada 1750A Compiler System, Release

3.0 VAX 11/785 (Host) to Fairchild F9450/1750A (Target) {°- "R ORMINGTDRG. 2R0RT WuMBEr

T. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

National Bureau of Standards
Gaithersburg, MD

@. PERFORMING ORGANIZATION AND ADORESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

National Bureau of Standards
Gaithersubrg, MD

11. CONTROLLING QFFICE NAME AND ADDRESS 12. REPORT DATE

Ada Joint Program Office

United States Department of Defense L,-,—,m;rm FEGTS

Washington, DC 20301-3081 ’)

14. MONITORING AGENCY NAME & AQDRESS(If different from Controiling Office) 15. SECURITY CLASS (of thisreport)
UNCLASSIFIED

National Bureau of Standards 13a. giﬁkaafétICAHONIDOHNGRADING

Gaithersuburg, MD

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20 If different from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD~-
1815A, Ada Joint Program Office, AJPO '

20. ABSTRACT (Continue on reverse side if necessary and ident:fy by block number)

InterilT Ada 1750A Compiler System, Release 3.0, InterACT Corporation, National Bureau
of Standards, VAX 11/785, VMS, Version 4.5 (Host) to Fairchild F9450/1750A, none, none,
ACVC 1.9

D0 UM 1473 €0ITION OF 1 NOV 65 IS DBSOLETE
1313 $/N 0102-LF-014-6601 UNCLASSIFIED

SECUBLYY ASSIFICAT] Of THIS PA wWh ered
R
LN ’;

AVF Control Number: NBS88VACTS20

Ada Compiler
VALIDATION SUMMARY REFCRT:
Certificate Number: 88071551.09153
InterACT Corporation
InterACT Ada 1750A Campiler System, Release 3.0
VAX 11/785 Host, Fairchild F9450/1750A Target

Campletion of On-Site Testing:
15 July 1988

Prepared By:

Software Standards Validation Group
Institute for Computer Sciences and Technology
National Bureau of Standards
Building 225, Rocm A266
Gaithersburg, Maryland 20899

Prepared For:
Ada Joint Program Office
United States Department of Defense
Washington, D.C. 20301-3081

Ada Campiler Validation Summary Report:

Campiler Name: InterACT Ada 1750A Campiler System, Release 3.0

Certificate NMumber: 880715S1.09153

Host:
VAX 11,785
VMS,
Version 4.5

Target:

Fairchild F9450/1750A
none,
none

Testing Ccmpleted 15 July 1988 Using ACVC 1.9

This report has been reviewed ard is approved.

NaWIR

Ada Validation Facility \

Dr. David K. Jeffersch
Chief, Information Systens
Buginee.ri.ng Division
National Bureau of Standards
Gaithersburg, MD 20899

@Z D

/Ada Validaticn Organizaticn
Dr. Jchn F. Kramer

Institate for Defense Analyses
Alexardria, VA 22311

WA DA
Ada Joint Program Office
Virginia L. Castor
Director
Department of Defense
Washington DC 20301

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTICN

1.1 FURFCSE OF THIS VALIDATICON SUMMARY REFCRT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REFORT 1-2
1.3 REFERENCES . « o o « o s s s o o s ¢ 5 o o o o o o 1=3
1.4 DEFINITION OF TERMS . .« « ¢« ¢ « o s o ¢ o o o« o +» 1=3
1.5 ACVC TEST CIASSES & v &« o o o ¢ o » s s o s » o « 1-4

CHAPTER 2 CONFIGURATICN INFORMATICN
2.1 CCNFIGURATION TESTED . . . & ¢« ¢ « & & e e e e s o 21
2.2

DIPIEMENTATIONG-!ARACI‘ERISTICS..........Z—Z

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULIS . . . e s s e o o o o s 3=1
3.2 S[MRYOFTE‘STRESUIH’SBYCLASS...... e o 3=1
3.3 SUMMARY OF TEST RESUITS BY CHAPTER « + + « o &« - o 3=2
3.4 WITHCRAWN TESTS @ ¢ ¢ ¢ « o o o o o o o o o s - o 3=2
3.5 INAPPLICABIE TESTS ¢« ¢« « ¢« o o o = e o 3=2
3.6 TEST, PROCESSING, AND EVAIIJATICN PDDIFICBXTIONS .« 3~4
3.7 ADDITICNAL TESTING INFORMATICN . « ¢« « o o « & e » 3~5
3.7.1 Prevalidatiocn . . +« ¢ ¢« ¢« ¢ « « ¢« « o« s o« s « o 3=5
3.7.2 Test Method . ¢« ¢« ¢ ¢ ¢ ¢« o ¢ ¢ o« s o o o o « « 35
3.7.3 Test Site & v v v ¢ o 4 ¢ o o o s 4 e e e« e s s 376

APPENDIX A CCNFCRMANCE STATEMENT
APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

; Acﬂession For
APPENDIX D WITHCRAWN TESTS e NTIS GPA&I IE

T
‘ m o
~ | DTIO Tiy 0
: ;:;iil,; i Lnunozanced 0
~ e/." PoousnLriention
e S b o
PRy

1 Llans ot A.\....,’

- -

i A‘l;)l"\‘ﬂ‘y {2153
r IS ERIEEEFN SIS

pist] RILIBRITY

CHAPTER 1

\ INTRODUCTION

L //'“'

~bs

This Validation Summary Report J(VSR} describes the extent to which a
specific Ada campiler conforms to the Ada Standard, ANSI/MIL~-STD-1813A.
This report explains all technical terms used within it and thoroughly
reports the results of testmg this campiler using the Ada Campiler
Validation Capability {ACY&y. An Ada campiler must be implemented
according to the Aca Stardard, and any implementaticn-depencdent features
mist conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that
is not in the Standard.™

“Even though all validated Ada campilers ccnform to the Ada Standard, it
must be understood that some differences do exist between
implementations. The Ada Standard permits scme implementation
dependencmﬁ—for example, the maximm length of identifiers or the
maximm values of integer types. Other differences between ccmpilers
result from the characteristics of particular cperating systems,
hardware, or implementation strategies. All the deperdencia cbserved
during the process of testing thlS ccmplle.r are glven in this r.eport.
This information in this report is de.rlved frem the test results
produced during validation testing. The validation process includes
suktmitting a suite of standardized tests, the ACVC, as inputs to an Ada
campiler and evaluating the results. N The purpcse of validating is to
ensure ccnformity of the ccrpiler to the Ada Standard by testing that
the ccampiler preperly implements legal language censtructs and that it
identifies and rejects illegal larguage constructs. The testing also
identifies behavior that is implementaticn dependent kut permitted by
the Ada Standard. Six classes of test are used. These tests are
designed to perform checks at ccmpile time, at link time, arnd during
execution.

[
{
Fan

1.1 PURFOSE OF THIS VALIDATION SUMMARY REFCRT

This VSR documents the results of the validation testing performed on an
Ada campiler. Testing was carried cut for the following purpcses:

To attenpt to identify any language constructs supported by
the campiler that do not conform to the Ada Standard

To attempt to identify any unsupported language constructs
recuired by the Ada Standard

To determine that the implementation-dependent behavior is
allcwed by the Ada Standard

Testing of this camwpiler was conducted by the Naticnal Bureau of
Standards according to policies and procedures established by the Ada
Validation Organization (AVD). On-site testing was completed on 16 July
1988 at InterACT Corporaticn, New York, New York.

1.2 USE OF THIS VALIDATICN SUMMARY REFORT

Consistent with the national laws of the originating country, the AVO
may make full and free public disclosure of this report. In the United
States, this is provided in accordance with the "Freedam of Information
Act" (5 U.S.C. #552). The results of this validation apply only to
the camputers, operating systems, and compiler versions identified in
this report.

The organizations representad cn the signaturs page of this report do
not represent or warrant that all statsments set forth in this report
are accurate ard ccmplete, or that the subject campiler has no
ncncenformities to the Ada Standard cother than those presented. Ccpies
of this report are available to the public from:

Ada Informaticn Clearinghouse

Ada Joint Program Office

COUSLCRE

The Pentagen, Rm 3D-129 (Ferm Street)
Washingten DC 20301-3081

or fram:

Software Standards Validation Group

Institute for Camputer Sciences and Technology
National Bureau of Standards

Building 225, Roam A266

Gaithersburg, Marylard 20899

1-2

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organizatian
Institute for Defence Analyses
1801 North Beauregard Street
Alexardria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming [anquage,
ANSI/MI1~STi~1815a, Tebruary 1983 and ISO 8652-1987.

2. 24a Ccmpiler Validaticn Proeedures and Guidelines. Ada Joint
Program Office, 1 Jamary 1987.

3. Ada Compiler Validation Capability Implementers' Guide.,
December 1986.

1.4 DEFINITICN OF TERMS

Acve The Ada Ccrpiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada campiler to

the Ada programming lanquage.

Ada Ccmmentary An Ada Commentary contains all information relevant to
the point addressed by a cocmment cn the Ada Standard.
These ccmments are given a unicue identification mumber
having the form AI-dddcdd.

Ada Stardard ANSI/MIL~STD~181%7A, February 1983 and ISO 8632-1587.

Applicant The agency requesting validation.

AVF The Ada Validaticn Facility. The AVF is responsible tor
coencducting compiler validations according to procedures

centained in the Ada Compiler Validaticon Procedures ard

AVO The Ada Validation Organizaticn. The AVO has oversight
authority over all AVF practices for the purpcse of
maintaining a uniform process for validation of Ada
ccnpilers. The AVO provides administrative and
technical support for Ada validations to ensure
consistent practices.

1-3

Carpiler A processor for the Ada language. In the context of
this report, a campiler is any language processor,
including cross-compilers, translators, and

interpreters.

Failed test An ACVC test for which the camwpiler generates a result
that demonstrates nonconformity to the Ada Standard.

Host The camputer on which the campiler resides.

Inapplicable An ACVC test that uses features of the language that a

test campiler is not required to suppert or may legitimately
support in a way other than the one expected by the
test.

Lanquage The lLanguage Maintenance Panel (IMP) is a camittee

Maintenance established by the Ada Beard to recommend

interpretations and Panel possible changes to the
ANSI/MIL~STD for Ada.

Passed test An ACVC test for wihich a campiler generates the expected

result.
Target The ccmputer for which a campiler generates code.
Test An Ada program that checks a campiler's conformity

regarding a particular featire or a ccmbination of
features to the Ada Standard. In the context of this
report, the term is used to designate a single test,
which may comprise one or more files.

Withdrawn An ACVC test fourd to be incorrect and not used to check

test cenformity to the Ada Standard. A test may be incorrect
because it has an invalid tast cbjective, fails to meet
its test cbjective, or ccntains illegal or errrnecus use
of the larguage.

1.5 ACVC TEST CLASSES

Cenformity to the Ada Standard is measured using the ACVC. The ACVC
centains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belcngs. Class A, C, D, and E tests
are executable, and special prcgram units are used to report their
results during execution. Class B tests are expectad to produce
ccmpilation errors. Class L tests are expected to produce ccompilation
or link errors.

Class A tests check that legal Ada programs can be successfully campiled
and executed. There are no explicit program camponents in a Class A

1-4

test to check semantics. For example, a Class A test checks that
reserved words of ancther language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada campiler.
A Class A test is passed if no errors are detected at campile time and
the program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is camwpiled
and the resulting corpilaticn listing is examined to verify that every
syntax or semantic error in tlie test is detected. A Class B test is
passed if every illegal construct that it contains is detected by the
carpiler.

Class C tests check that legal Ada programs can be correctly campiled
and executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the campilaticn and execution capacities of a
carpiler. Since there are no capacity requirements placed on a campiler
by the Ada Standard for scme parameters—for example, the mumber of
identifiers permitted in a compilation or the mumber of units in a
library—a ccmpiler may refuse to campile a Class D test and still be a
conforming ccmpiler. Therefore, i1f a Class D test fails to ccmpile
because the capacity of the ccmpiler is exceeded, the test is classified
as inapplicable. If a Class D test ccrpiles successrfully, it is
self-checking and produces a PASSED or FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE,
PASSED, or FAILFD message when it is compiled and executed. However,
the Ada Standard permits an implementation to reject programs containing
scme features addressed by Class E tests during ccmpilaticn. Therefore,
a Class E test is passed by a campiler if it is ccmpiled successfully
ard executes to produce a PASSED message, or if it is rejected by the
ccarpiler for an allcwable reascn.

Class L tests check that inccmplete or illegal Ada programs invelving
multiple, separately ccmpiled units are detected and not allowed to
execute. Class L tests are campiled separately and execution is
attempted. A Class L test passes if it is rejected at link time—that
is, an attempt to execute the main program must generate an error
message before any declaraticns in the main program or any units
referenced by the main program are elaborated.

Two library units, the package REFCRT and the procedure CHECK FILE,
surport the self-checking features of the executable tests. The package
REFCRT provides the mechanism by which executable tests report PASSED,
FAIIED, or NOT APPLICARLE results. It also provides a set of identity
functions used to defeat same campiler optimizations allcwed by the ada
Standard that would circumvent a test objective. The procedure CHECK
FILE is used to check the contents of text files written by same of the
Class C tests for chapter 14 of the Ada Standard. The operation of

1-5

REPORT and CHECK FIIE is checked by a set of executable tests. These
tests produce messages that are examined to verify that the units are
cperating correctly. If these units are not operating correctly, then
the validation is not attempted.

The text of the tests in the ACVC follow conventicns that are intended
to ensure that the tests are reascnably portable without modification.
For example, the tests make use of only the basic set of 55 characters,
contain lines with a maximm length of 72 characters, °:se small mneric
values, and place features that may not be supported by all
implementations in separate tests. However, scame tests contain values
that require the test to be customized according to
implementation~specific values—for example, an illegal file name. A
list of the values used for this validation is provided in Apperdix C.

A campiler must correctly process each of the tests in the suite and
demcnstrata conformity to the Ada Standard by either mesting the pass
criteria given for the test or by showing that the test is inapplicable
to the implementation. The applicability of a test to an implementation
is considered each time the mplementatlon is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validatiocn. Any test that was determined to contain an
illegal lamguage construct or an erronecus language construct is
withdrawn from the ACVC ard, therefore, is not used in testing a
carpiler. The tests withdrawn at the time of validation are given in

Arperdix D.

CHAPTER 2

CONFIGURATION INFORMATION

2.1 COONFIGURATION TESTED
The cardidate compilation system for this validation was tested urder
the following configuration:

Campiler: InterACT Ada 175CA Ccmpiler System, Release 3.0

ACVC Version: 1.9

Certificate Number:
Host Computer:
Machine:

Operating System:

Memcry Size:

88071551.09153

VAX 11/785

VMS
Version 4.5

16 MB

Target Ccmputer:

Machine: Fairchild F9450/1750A
Cperating System: ncre
Memory Size: 64 KB

Ccmmunications Network: VAX/64000 Interface Softvare

The A.C.T. Ada ccrpiler ard linker run on VAX/VMS and produce 1750A load
mocdule files cn the VAX. These load modules are in ACT 17S50A Linker
format. An ACT prcprietary tool, ACA H, is then run on the VAX to
produce load modules files in Hewlet Packard (HP) 64000 format. HP's
VAX/64000 interface software is then used to transfer the load module to
the HP 64000 Workstation, containing the 1750A chip (a Fairchild 9450),
run the load module on the 1750A processor, and then transfer output
from the run back to the host VAX. This transfer-run-transfer sequence
is entirely under VAX/VMS control amd requires no marmal intervention at

2-1

the workstation. The ocutput produced during a run is created using
64000 simulated disk I/O. A HP 64286A Emilation Probe with a 64271/AB
control board is used to house the 1750A chip. This unit is attached to
the HP 64000 Workstation.

2.2 IMPLEMENTATION CHARACTERISTICS

Cne of the purpcoses of validating campilers is to determine the behavior
of a campiler in those areas of the Ada Standard that permit
implementations to differ. Class D ard E tests specifically check for
such implementation differences. However, tests in cther classes also
characterize an implementation. The tests demonstrate the following
characteristics:

~ Capacities.

The camwpiler correctly processes tests containing locp
statements nested to 65 levels, block statements nested to 65
levels, and recursive procedures separately campiled as subunits
nestad to 10 levels. It correctly processes a ccampilation
containing 723 variables in the same declarative part. (See
test DSS5A03A..H (8 tests), D56001B, D64005E..G (3 tests), and
D29002K.)

- Universal integer calculations.

An implementation is allowed to reject universal integer
calculaticns having values that exceed SYSTEM.MAX INT. This
implementatiocn processes 64 bit integer calculaticns. (See tests
P4AC02A, D4AO02B, D4A004A, and D4AC04B.)

- Precdefired types.

This implementation supports the additicnal predefined types
ICNG_INTEGER and ICNG FICAT in the package STANDARD. (S=e
tests B86001BC arnd B860Q1D.)

~ Based literals.

An implementation is allcwed to reject a based literal with a
value exceeding SYSTEM.MAX INT during ccmpilation, or it may
raise NUMERIC ERRCR or CCNSTRAINT ERRCR during execution. This
implementation raises NUMERIC ERRCR during execution. (See test
E24101A.)

Expression evaluation.

Apparently all default initialization expressions or record
carponents are evaluated before any value is checked to belong
to a camponent's subtype. (See test C32117A.)

Assigrments for subtypes are performed with less precision than
the base type. (See test C35712B.)

This implementation uses no extra bits for extra precisioen.
This implementation uses all extra bits for extra range. (See
test C35903A.)

Apparently NUMERIC ERROR is raised when an integer literal
cperand in a ccmparison or membership test is outside the range
of the base type. (See test C45232A.)

Apparently NUMERIC ERRCR is raised when a literal cperard in a
fixed-point ccmpariscn or membership test is outside the range
of the base type. (See test C45252A.)

Apparently underflow is not gradual. (See tests C45524A..Z.)

Rourding.

The method used for rourding to integer is apparently round away
from zero. (See tests C46012A..2.)

The method used for rounding to longest integer is apparently
round away frcm zero. (See tests C46012A..Z.)

The method used for rounding to integer in static universal real
expressicns 1s aprarently rcund away frocm zero. (See test
C4A014A.)

Array tvres.

An implementaticn is allowed to raise NUMERIC ERROR or
CCNSTRAINT ERRCR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAX INT. For this
implementationi:

NUMERIC ERRCR is raised when 'LENGIH is applied to an array type
with INTEGER'LAST + 2 ccompenents. (See test C36202A.)

NUMERIC ERRCR is raised when 'LINGIH is applied to an array type
with SYSTEM.MAX INT + 2 comporients. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC_ERROR when the array objects are declared. (See
test CS52103X.)

2-3

A packed two-dimensional BOOLEAN array with more than
INTEGER'IAST camponents raises NUMERIC ERRCR when the array
subtypes are declared. (See test CS2104Y.)

A mull array with one dimension of length greater than
INTEGER'IAST may raise NUMERIC ERRCR or CONSTRAINT ERRCR either
when declared or assigned. Altematlve.ly, an mplementatlon may
accept the declaration. However, lengths must match in array
slice assigrments. This implementation raises NUMERIC ERRCR
when the array type is declared. (See test ES2103Y.)

In assigning cne-dimensional array types, the expressicn appears
to be evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expressiocn's subty'pe is
compatible with the target's subtype. In assigning
two~dimensicnal array types, the expressicn dces not appear to
be evaluated in its entirety before CCNSTRAINT ERROR is raised
when checking whether the expression's subtype is ccmpatible
with the target's subtype. (See test CS2013A.)

Discriminated types.

During campilation, an implementation is allowed to either
accept or reject an incamplete type with discriminants that is
used in an access type definition with a campatible discriminant
constraint. This implementation accepts such subtype indications
indications during campilation. (See test E38104A.)

In assigning record types with disciminants, the expression
appears to be evaluated in its entirety before CCNSTRAINT ERRCR
is raised when checking whether the expression's subtype is
ccrpatible with the target's subtype. (See test CS2012A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, index
subtype checks appear to be made as choices are evaluated. (See
tests C43207A and C43207B.)

In the evaluaticn of an aggregates ccntaining subaggregates, all
choices are evaluated before being checked for identical bourds.
(See test E43212B.)

All choices are evaluated before CONSTRAINT ERRCR is raised if a
bound in a ncnrmull range of a nonmull aggregate does not belong
to an index subtype. (See test E43211B.)

- Representation clauses.

An implementaticn might legitimately place restrictions aon
representation clauses used by same of the tests. If a
representation clause is not supported, then the implementation
must reject it.

Enumeration representaticn clauses containing noncontiguous
values for emumeration types cther than character and boolean
types are supported. (See tests (35502I..J, C35502M..N, ard
A39005F.)

Emmeration representation clauses coontaining noncontigucus
values for character types are supported. (See tests
C355071..J, C35507M..N, ard CS5B16A.)

Emumeration representation clauses for boolean types containing
representational values other than (FALSE => 0, TRUE => 1) are
not supported. (See tests C35508I..J ard C35508M..N.)

Iength clauses with SIZE specifications for emmeration types
are not surported. (See test A39005B.)

Length clauses with STORAGE SIZE specifications for access types
are surported. (See tests A39005C arnd C87B62B.)

ILength clauses with STORAGE SIZE specifications for task types
are sugported. (See tests A39005D and C387B62D.)

length clauses with SMAIL specifications are supported. (See
tests A39005E and C87B62C.)

Reccrd erresentaticn clauses ares surported, however the
aligrment clause is not surrorted. (See test A39005G.)

Length clauses with SiZE specificaticns for derived integer
types are not supported. (See tast C37B62A.)

~ Pragmas.

The pragma INLINE is nct supported for procedures. The pragma
INLINE is not supported for functions. (See tests IA30044,
IA3004B, EAZ004C, EA3004D, CA3004E, and CA3004F.)

- Inmput/output.

The package SEQUENTIAL IO can be instantiated with unconstrained
array types and record types with discriminants without
defaults. (See tests AE2101C, EE2201D, and EE2201E.)

2-35

*—'_——_J

“__

The package DIRECT IO can be instantiated with unconstrained
array types and record types with discriminants without
defaults. (See tests AE2101H, EE2401D, and EE2401G.)

The director, AJFO, has determined (AI-00332) that every call to
OPEN and CREATE must raise USE ERROR or NAME ERROR if file
imput/cutput is not supported. This implementation exhibits
this behavior for SEQUENTIAL IO, DIRECT IO, and TEXT IO.

~ Generics.

Generic subprogram declarations and bodies can campiled in
separate campilations. (See tests CA1012A and CA2009F.)

Gereric package declarations arnd bodies can be campiled in
separate ccmpilations. (See tests CA2009C, BC3204C, and
BC3205D.)

Generic unit bodies and their subunits can be campiled in
separate campilations. (See test CA3011A.)

bodies Ttes

Generic mst be capiled before thei: -aaies- are
Un+

instantiated.

CHAPTER 3

TEST INFORMAITON

3.1 TEST RESULTS

Version 1.9 of the ACVC ccmprises 3122 tests. When this campiler was
tests, 28 tests had been withdrawn because of test errors. The AVF
determined that 507 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing.
Modifications to the code, processing, or grading for 10 tests were
required to successfully demcnstrate the test cbjective. (See section
3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULIS BY CIASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 107 1048 1360 16 11 45 2587
Inapplicable 3 3 493 1 6 1 507
Withdrawn 3 2 21 0 2 0] 28

TOTAL 113 1053 1874 17 19 46 3122

3-1

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

Passed 184 462 490 245 164 98 139 326 132 36 233 3 75 2587
Inarplicable 20110184 3 1 0 4 1 5 0 1 0178 507
Withdrawn 2 14 3 0 1 1 2 O oO0 0 2 1 2 28

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WITHCRAWN TESTS

The following 28 tests were withdrawn from ACVC Version 1.9 at the time
of this validation:

B28003A E28005C C34004A C35502P A35902C C35904A
C35904B C35A03E C35A03R C37212H C37213J C37215C
C37215E C37215G C37215H c38102C C41402A C45332A
C45614C ES6001D A74106C C35018B C387B04B CC1311B
BC3105a AD1AQlA CE2401H CE3208A

See Apperdix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Scme tests do not apply to all ccmpilers because they make use of
features that a campiler is not required by the Ada Standard to support.
Others may depend on the result of ancther test that is either
inapplicable or withdrawn. The applicability of a test to an
implementation is ccnsidered each time a validation is attempted. A
test that is inapplicable for cne validaticn attempt is not necessarily
inapplicable for a subsequent attempt. For this validation attempt, 507
test were inapplicable for the reascns indicated:

C35508I..J (2 tests) and C35508M..N (2 tests) use emmeration
representation clauses for derived types which are not supported by this
conpiler.

C35702A uses SHCRT FLOAT which is not supported by this implementaticn.

3-2

C35A06N campiled code exceeds the 64K memory capability of the target.
C36003A type declaration exceeds the capability of the campiler.

A39005B and C87B62A use length clauses with SIZE specifications which
are not supported by this campiler.

C87B62B defines an access type's collection size using a length clause,
where the length clause value is the collection size of ancther access
type that does not have a collecticon size length clause. The campiler
defines collection size in the latter case as arbitrarily large; as a
consequence, the attempt to use it in a collection size length clause
raises STORAGE ERRCR, as an arbitrarily large cbject cannot be allocated
by the campiler (the limit is 32K words).

A39005G uses an aliigmment clause which is not supported by this
campiler.

The following (14) tests use SHORT_INTEGER, which is not supported by
this campiler.

C452318 C45304B C455028 C45503B C45504B
C45504E C45611B C45613B C45614B C45631B
C45632B B52004E CS5B07B B55B09D

C45231D requires a macro substitution for any predefined mmeric types
other than INTBEGER, SHORT INTEGER, LONG_INTEGER, FLOAT, SHORT FIQAT, and
ICNG _FLCAT. 'Ihlsccnpllerdoesnotsupporta:wsuchtypes

C45531M, C45531N, C45532M, and C45532N use fine 48-bit fixed-point base
types which are not supported by this ccmpiler.

C455310, C45531P, (455320, and C45532P use coarse 48-bit fixed-point
base types which are not supperted by this campiler.

D64005G ccmpiles successfully but does not link in the 64K memory
capability of the target.

B86001D requires a predefined mumeric type cother than those defined by
the Ada language in package STANDARD. There is no such type for this
implementation.

C36001F recdefines package SYSTEM, but TEXT IO is made cbsolete by
this new definition in this mplementatlon and the test cannot be
executed since the package REPCRT is deperdent on the package TEXT IO.

C96005B requires the range of type DURATICN to be different from those
of its base type: in this implementation they are the same.

CA2009C and CA2009F instantiate generic units before the units' bodies
are campiled. This campiler requires that such bodies be compiled
before the unit is instantiated.

CA3004E, EA3004C, and IA3004A use ihe INWLINE pragma for procedures,
which is not supported by this campiler.

CC1221A campiles successfully but does not link in the 64K memory
capability of the target.

The following 178 tests are inapplicable because sequential, text, and
direct access files are not supported.

CE2102C CE2102G..H(2) CE2102K CE2104A..D(4)
CE2105A..B(2) CE2106A..B(2) CE2107A..I(9) CE2108A..D(4)
CE2109A..C(3) CE2110A..C(3) CE2111A..E(5) CE2111G..H(2)
CE2115A..B(2) CE2201A..C(3) EE2201D..E(2) CE2201F..G(2)
CE2204A..B(2) CE2208B CE2210A CE2401A. .C(3)
EE2401D CE2401E..F(2) EE2401G CE2404A
CE2405B CE2406A CE2407A CE2408A
CE2409A CE2410A CE2411A AF3101A
CE3102B EE3102C CE3103A CE3104A
CE3107A CE3108A..B(2) CE3109A CE3110A
CE3111A..E(5) CE3112A..B(2) CE3114A..B(2) CE3115A
CE3203A CE3301A..C(3) CE3302a CE3305A
CE3402A..D(4) CE3403A..C(3) CE3403E..F(2) CE3404A..C(3)
CE3405A..D(4) CE3406A..D(4) CE3407A..C(3) CE3408A..C(3)
CE3409A CE3409C..F(4) CE3410A CE3410C. .F(4)
CE3411A CE3412A CE3413A CE3413C
CS3602A..D(4) CE3603A CE3604A CE3605A. .E(5)
CE3606A..B(2) CE3704A..B(2) CE3704D..F(3) CE3704M..0(3)
CE3706D CE3706F CE3804A..E(5) CE3804G
CZ3804T C=3804K CE3804M C=2805A. .B(2)
CE3806A CE3806D..E(2) CE3905A..C(3) CE390SL
CS3906A..C(3) CE3906E..F(2)

The follcowing 285 tests require a flcating-point accuracy that exceeds
the maximm of 9 digits supported by this implementation:

C24113F..Y (20 tests)
C35706F..Y (20 tests)
C35708F..Y (20 tests)
C45241F..Y (20 tests)
C35421F..¥ (20 tests)
C45524F..2 (21 tests)
C45641F..Y (20 tests)

C3I5705F..Y (20 tests)
C35707F..Y (20 tests)
C35802F..Z (21 tests)
C45321F..Y (20 tests)
C45521F..Z (21 tests)
C4S621F..Z (21 tests)
C46012F..Z (21 tests)

3.6 TEST, PROCESSING, AND EVALUATICN MODIFICATICNS
It is expected that scme tests will require modifications of code,

3~4

processing, or evaluation in order to campensate for legitimate
implementation behavior. Modifications are made by the AVF in cases
where legitimate implementation behavior prevents the successful
campletion of an (cotherwise) applicable test. Examples of such
modifications include: adding a length clause to alter the default size
of a collection; splitting a Class B test into sub~tests so that all
errors are detected; and confirming that messages produced by an
executable test demonstrate conforming behavior that wasn't anticipated
by the test (such as raising one exception instead of another).

Modifications were required for 10 Class B tests.

The foliowing Class B tests were split because syntax errors at cne
point resulted in the campiler not detecting other errors in the test:

B33301A BS5A01A B67001A B67001C B67001D
BA1101B2 BA1101B4 BC1109A BC1109C BC110eD

3.7 ADDITICNAL TESTING INFORMATICON
3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced
by the InterACT Ada 1750A Capiler System was sukmitted to the AVF by
the applicant for review. Aanalysis of these results demonstrated that
the compiler successfully passed all applicable tests, and the campiler
exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the InterACT Ada 1750A Compiler System using ACVC Version 1.9
was ccnductad cn-site by a validaticn team frecm the AVF. The
cenfiguraticn censistad of a VAX 11/785 cperating under VMS, Version 4.5
ard a Fairchild F9450/1750A withcut an cperating system. The host and
target coamputars were linked via VAX 64000 Interface Software using the
HP 64000 Workstaticn.

A magnetic tape containing all tests was taken on~site by the validaticn
team for processing. Tests that make use of implementation~specific
values were custcmized on-site after the magnetic tape was loaded.
Tests requiring medificaticns during the prevalidaticn testing were not
included in their modified form on the magnetic tape. The contents of
the magnetic tape were not loaded directly onto the host camputer.

After the test files were loaded to disk, the full set of tests was
campiled ard linked on the VAX 11/785, and all executable tests were run
on the Fairchild F9450/1750A. Object files were linked on the host
camputer, and executable images were transferred to the target carmputer
via VAX 64000 Interface Software. Results were printed from the host
camputer, with results being transferred to the host camputer via VAX

3-5

“

64000 Interface Software.

The campiler was tested using cammand scripts provided by InterACT
Corporation ard reviewed by the validation team. The campiler was
tested using all default switch settings.

Tests were campiled, linked, and executed as appropriate using a single
host camputer and a single target camputer. Test ocutput, campilation
listings, and jcb logs were captured on magnetic tape and archived at
the AVF. The listings examined on-site by the validation team were also
archived.

3.7.3 Test Site

Testing was conducted at InterACT Corporation, New York, New York ard
was ccmpleted con 16 July 1988.

Testing was performed in a mixed batch mode with other on-going
processes.

LS APPENDIX A
DECTARATION OF CONFORMANCE

Appendix A

DECLARATION OF CONFORMANCE

Compilar Implementer: IntgrACT Corporation
Ada Vaildatlon Facility: Natignal Bureau of Standards
Ada Complier Vallidation Capablility (ACVC) Version: 1.9

e ——————

Base Contiguration

Base Compiler Name: InterACT Adal750A Comoiler Svstem Release 3.0

Host Architecture - |SA: YAX11/78% OSAVER &: YMS 4.5

Target Architecture - (SA: _Fairchild 9450/ OS&VER ®: bare machine
1750A

Derived Compliler Registration

Darived Compller Name:_InterACT Adal750A Compiler System Release 3.0

Host Archlitacturs ~ 1SA:Anv YAX seriesOS&VER #: 4.3 gr areatar
Target Architecture = [SA:jpgv SEAFAC OSAVER #: No 0S required

certified 1750A
impismenter’'s Declaration

l, the undersigned, repregenting InterACT Corp. have
implemented no de! lberates extensions to the Ada Language Standard
ANSI/MIL-STD~1815A in the compller(g) listad in this desclaration.
| daclare that InteraACT Corn., is the owner of record of
the Ada fanguage compiler(s) |lstad above and, as such, is
responsible for maintalning wsald compiler(s) in conformance to
ANSI/MIL-STD~-1818A. All certiticates and registrations for Ada
language compller(s) lilstsd In ¢this declaration shall be made

only In the owner':\ccr qrate .
s R v S S o/2/es

—

Cwner’'s Declaration

V., the undersigned, resprasanting Intard(T C~rn, ~ take ful!
responsibillity ftor Implamentation and maintenanca of the Ada
compller{s) |isted above, and agree to the public disclosure of
the final Validatlion Summary Raport,. | further agree to continue
to comply with the Ada trademark pollcy, as deflined by the Ads
Jaint Program Oftice. | decliara that all of the Ada language
compilers {isted, and thelr hast/target —performance—are——in

éompllance with the Ada Language Standard ANSI/MIL-STD-1815A. {
have reviaewed the Validatlion Sunmary Raport for the compilar (s)

and concur wlth(ﬁgg*gop;antz. e
S e) /5,5
- - IJ)

This document is part of the Valldation Summary Report (VSR),
Appendix A, tor initial wvalldations and must be submitted for
each .derlved compller registration durlng or esubsequent to
initial vatidation,

APPENDIX B

APPENDIX F OF THE Ada STANCARD

The only allowed implementation dependencies correspord to
implementation-dependent pragmas, to certain machine~dependent
conventions as mentioned in chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics nf the InterACT Ada 1750A
Campiler System, Release 3.0, are described in the following sections
which discuss tcpics in Appendix F of the Ada Standard. Implementation-—
specific portions of the package STANDARD are alsc included in this
apperdix.

package STANDARD is

type INTEGER is range -32_768 .. 32_767;
type ICNG_INTEGER is range -2_147_483_648 .. 2_147_483_647;

type FIOAT is digits 6 range ~1.0%2.0%*127 ..
0.999999%2,0**127;

type LCNG _FICAT is digits 9 range -1.0%2.0%*127 ..
0.999999%2.0**127;

type DURATICN is delta 2**(-14) range ~131 072.0 .. 131_071.0;

end STANDARD;

Appendix F
Appendix F of the Ada Reference Manual

This appendix describes all implementation-dependent characteristics of the Ada language as implemented by
the InterACT Ada 1750A Compiler, including those required in the Appendix F frame of Ada RM.
F.1. Predefined Types in Package STANDARD

This section describes the implementation-dependent predefined types declared in the predefined package
STANDARD (Ada RM Annex C], and the relevant attributes of these types.

Integer Types

Two predefined integer types are implemented, INTEGER and LONG_INTEGER. They have the following
attributes:

INTEGER'FIRST = -32.768
INTEGER'LAST = 3277
INTEGER'SIZE = 16
LONG_INTEGER'FIRST = -2 147 483 648
LONG_INTEGER'LAST = 2 147 183 647
LONG_INTEGER'SIZE = 32

Floating Point Types

Two predefined floating point types are implemented, FLOAT and LONG_FLOAT. They have the following
attributes:

FLOAT DIGITS

= 6 . _
FLOATEPSILON = 9.53674316406250E-07 -
FLOATFIRST = 1020127 - e
FLOAT'LARGE = 1.93428038904620E +25
FLOAT'LAST = 0.999999 * 2.0°*127
FLOAT'MACHINE_EMAX = 127 - E
FLOAT'MACHINE_EMIN = 1238
FLOATMACHINE_MANTISSA =

F-2 Appendix F of the Ada Reference Manual
FLOATMACHINE_OVERFLOWS = TRUE

FLOAT'MACHINE_RADIX = 2

FLOATMACHINE_ROUNDS = FALSE

FLOATMANTISSA = 21

FLOAT SAFE_EMAX = 127

FLOAT'SAFE_LARGE = FLOATLAST

FLOAT SAFE SMALL = 05%20%*(-127)

FLOATSIZE = 32

LONG_FLOATDIGITS 9

931322574615479E-10
-1.0 * 2.0**127
2.0°*124%(1.0-2.0°*(-31))

LONG_FLOATEPSILON
LONG _FLOATFIRST
LONG_FLOAT'LARGE

W u un

LONG_FLOATLAST 99999999* 2.0**127

LONG_FLOAT'MACHINE_EMAX = 127

LONG_FLOAT'MACHINE_EMIN = -128

LONG_FLOAT'MACHINE_MANTISSA = 3

LONG FLOAT'MACHINE_OVERFLOWS = TRUE
LONG_FLOAT'MACHINE_RADIX = 2

LONG_FLOAT'MACHINE_ROUNDS = FALSE

LONG_FLOAT'MANTISSA = 31

LONG _FLOAT'SAFE_EMAX = 127

LONG_FLOATSAFE_LARGE
LONG_ FLOAT‘SAF‘: “SMALL
LONG FLOAT'SIZE

LONG_FLOAT'LAST
0.5 * 2%%(-127)
48

Fixed Point Types

Two kinds of anonymous predefined fixed point types are implemented: fixed and long_fixed. Note that these
names are not defined in package STANDARD, but arc used here only for reference.

For objects of fired types, 16 bits are used for the representation of the object. For objects of long fixed types,
32 bits are used for the representation of the object.

For fixed and long_fixed there is a virtual predefined type for cach possible value of small [Ada RM 3.5.9]. The
possible values of small are the powers of two that are representable by a LONG_FLOAT value.

The lower and upper bouads of these types are:

[}

lower bound of fixed types -32768 * smaill

2767 * small
-2 147 483 648 * ymall -
2_147_483_647 * small

" upper bound of fixed types
lower bound of long_fixed types
upper bound of long fixed types

-

A declared fixed point type is represented as that predcfined fixed or long_fixed type which has the largest value
of small not greater than the declared delta, and whxch has the smailcsl range that includes the declared range
constraint. - s

- -

Any fixed point type T has the following attributes:

TRUE .
FALSE

TMACHINE OVERFLOWS
TMACHINE_ROUNDS

L}

[}

Type DURATION

Appendix F of the Ada Reference Manual F3
DURATION'AFT = 5

DURATION'DELTA = DURATION'SMALL
DURATION'FIRST = -131 0720

DURATION'FORE = 7

DURATION'LARGE = 131071999938965E05
DURATION'LAST = 131 0710
DURATION'MANTISSA = 31

DURATION'SAFE LARGE = DURATION'LARGE
DURATION'SAFE SMALL = DURATION'SMALL
DURATION'SIZE = 32

DURATION'SMALL = 6.10351562500000E-05 = 2**(-14)
F2. Pragmas

This section lists all language-defined pragmas and any restrictions on their use and effect as compared to the
definitions given in Ada RM.

Pragma CONTROLLED

This pragma has no effect, as no automatic storage reclamation is performed before the point allowed by the
pragma.

Pragma ELABORATE

As inAdda RM.

Pragma INLINE

This pragma causes inline expansion to be performed, except in the following cases:

1. The whole body of the subprogram for which inline expansion is wanted has not been seen. This
ensures that recursive procedures cannot be inline expanded.

S

The subprogram call appears in an expression on which conformance checks may be applied, i.c., in a
subprogram specification, in a discriminant part, or in a formal part of an entry declaration or accept
statement.

3. The subprogram is anm instantiation of the predefined generic subprograms
UNCHECKED_CONVERSION or UNCHECKED_DEALLOCATION. Calls to such subprograms
are c‘cpandcd inline by tbc compiler automancally

4. The subprogram is declared in a generic unit. The body of that generic unit is compiled as a secon-
dary unit in the same compilation as a unit containing a call to (an instance of) the subprogram.

-

5. The subprogram is declared by a renaming declaration.

6. The subprogram is passed as a generic actual parameter. _

W\

A warning is given if inline expansion is not achieved.

Note that the primary opumlzmg effect of this implementation of inline expansion is the ehmmauon or reduc-
tion of parameter passing code, rather the reduction of basic subprogram calil averhcad. -

F-4 Appendix F of the Ada Reference Manual

Pragma INTERFACE

This pragma is supported for the fanguage names defined by the enumerated type INTERFACE_LANGUAGE
in package SYSTEM. Languages other than BIF support Ada calls to subprograms whose bodics are written in
that language. Language BIF (for "built-in function™) supports inline insertion of assembly language macro invo-
cations; the macros themselves may consist of executions of 1750A hardware built-in functions, or of any
sequence of 1750A instructions. Thus, pragma INTERFACE (BIF) serves as an alternative to machine code
insertions.

Language ASSEMBLY

For pragma INTERFACE (ASSEMBLY), the compiler generates a call to the name of the subprogram. The
subprogram name must not exceed 31 characters in length. Parameters and results, if any, are passed in the
same fashion as for a normal Ada call (see Appendix P).

Assembly subprogram bodies are not elaborated at runtime, and no runtime elaboration check is made when
such subprograms are called.

Assembly subprogram bodies may in turn call Ada program units, but must obey all Ada cailing and environ-
mental conventions in doing so. Furthermore, Ada dependencies (in the form of context clauses) on the called
program units must exist. That is, merely calling Ada program units from an assembly subprogram body will
not make those program units visible to the Ada Linker.

A pragma INTERFACE (ASSEMBLY) subprogram may be used as a main program. In this case, the pro-
cedure specification for the main program must contain context clauses that will (transitively) name all Ada
program umits.

If an Ada subprogram declared with pragma INTERFACE (ASSEMBLY) is a library unit, the assembled sub-
program body object code module must be put into the program library via the Ada Library Injection Tool (see
Chapter 7). The Ada Linker will then automatically include the object code of the body in a link, as it would the
object code of a normal Ada body.

If the Ada subprogram is not a library unit, the assembled subprogram body object code module cannot be put
into the program library. In this case, the user must direct the Ada Linker to the directory containing the object
code module (via the /user_rts qualifier, see Section 5.1), so that the 1750A Linker can find it.

Language BIF
For pragma INTERFACE (BIF), the compiler generates an inline macro invocation that is the name of the

subprogram. The subprogram name must not exceed 31 characters in length. Subprogram parameters and
results, if any, are passed in the same fashion as for a normal Ada call (see Appendix P), except that the macro

. invocation replaces the call. No macro arguments are passed on the invocation. —

A macro file must exist at the time of the compile containing a macro definition with the same name as the sub-
program. This macro file should have a file name that is the same as the subprogram, and a file type of mac.
The file should cither be located in the current default directory, or be defined by one of twological names:
maclib, or the macro name itself. (Sce the InterdCT 17504 Assembler and Linker User’s Manual for a full
explanation.)

Tl e

- -

Languages JOVIAL and FORTRAN

These languages may also be specified for pragma INTERFACE, but are equivalent to language ASSEMBLY.
The compiler generates calls to such subprograms as if they were Ada subprograms, and does not do any

Appendix F of the Ada Reference Manual F-5

special data mapping or parameter passing peculiar to the InterACT JOVIAL or FORTRAN compilers.
Pragma LIST

As in Ada RM.

Pragma MEMORY_SIZE

This pragma has no effect. See pragma SYSTEM_NAME.

Pragma OPTIMIZE

This pragma has no effect.

Pragma PACK

This pragma is accepted for array types whose component type is an integer or enumeration type that may be
represented in 16 bits or less. The pragma has the effect that in allocating storage for an object of the array

type, the object components are each packed into the next largest 2" bits needed to contain a value of the com-
ponent type. For example, integer components with the range constraint -8 .. 7 are packed into 4 bits; boolean
components are packed into one bit.

This pragma is also accepted for record types but has no effect. Record representation clauses may be used to
"pack” components of a record into any desired number of bits; see Section F.6.

Pragma PAGE
As in Ada RM.
Pragma PRIORITY

As in Ada RM. See the Ada 17504 Runtime Executive Programumer’s Guide for how a default priority may be
set. '

Pragma SHARED
This pragma has no effect, in terms of the compiler (and a warning message is issued). However, based on the
current method of code generation, the effect of pragma SHARED is automatically achieved for all scalar and

access objects.

Pragma STORAGE_UNIT

This pragma has no effect. Sce pragma SYSTEM_NAME,

Pragma SUPPRESS

Only the "identifier” argument, which identifies the type of check to be omitted, is allowed. The "[ON =>]
name" argument, which isolates the check omission to a specific object, type, or subprogram, is not supported.

Pragma SUPPRESS with DIVISION_CHECK and OVERFLOW_CHECK has no effect. However, through
runtime executive customizations (sce the Ada 17504 Runtime Executive Programmer’s Guide), the overflow
interrupts that are used to implement those checks may be masked. Pragma SUPPRESS with all other checks
results in the corresponding checking code not being gencerated.

F-6 Appendix F of the Ada Reference Manual

Pragma SYSTEM_NAME
This pragma has no effect. The only possible SYSTEM_NAME is MIL _STD_1750A. The compilation of

pragma MEMORY SIZE, pragma STORAGE_UNIT, or this pragma does not cause an implicit recompilation
of package SYSTEM.

F3. Implementation-dependent Pragmas

F3.1. Program Library Basis Pragmas

Certain pragmas defined by this Compiler System apply to Ada programs as a whole, rather than to individual

compilation units or declarative regions. These pragmas are
NO_DYNAMIC OBJECTS OR_VALUES USED, |
NO_DYNAMIC_MULTIDIMENSIONAL ARRAYS_USED, and

SET MACHINE _OVERFLOWS_FALSE _ FOR ANONY\AOUS FIXED.

These pragmas apply on a program library wide basis, and thus apply to any and all programs compiled and
linked from a given program library. The meanings of these pragmas is described in the subsections below; the
way in which these pragmas are specified is described in this subsection.

These pragmas may only be specified within the implementation-defined library unit LIBRARY _PRAGMAS,
which in turn may only be compiled into the Compiler System predefined library. If either of these restrictions
are not honored, the pragmas have no effect.

The contents of this library unit when delivered are

package LIBRARY_PRAGMAS is
NO_DYNAMIC_OBJECTS_OR_VALUES_USED : constant BOOLEAN := FALSE;
NO_DYNAMIC_MULTIDIMENSIONAL_ARRAYS_USED : constant BOOLEAN := FALSE;
SET_MACHINE_OVERFLOWS_FALSE_FOR_ANONYMOUS_FIXED : constant BOOLEAN := FALSE;

end LIBRARY_PRAGMAS;

In order to specify any or all of the pragmas, the source for this package is modified to include the pragmas
after the constant declarations (the source file is defined by the logical name actada_library_pragmas). For
example,

.__package LIBRARY_PRAGMAS is . e e . —_ _—

NO_DYNAMIC_CBJECTS_OR_VALUES_USED : constant BCOLEAN := EALSE;

NO_OYNAMIC MULTIDIMENSIQONAL_ARRAYS_USED : constant BOOLEAN := FALSE;

]

SET_MACHINE_OVERFLOWS_FALSE_FOR_ANCNYMOUS_FIXED : constant BOOLEAN := FALSE;

pragma NO_DYNAMIC_OBJECTS_OR_VALUES_USED;

)

pragma SET_MACHINE_OVERFLOWS_FALSE_FOR_ANONYMOUS_F IXED;

end LIBRARY_PRAGMAS;

e

Appendix F of the Ada Reference Manual F-7

This modified source is then compiled into the predefined library. To do this, unit LIBRARY_PRAGMAS |
must first be unlocked via Ada PLU (see Chapter 3). l

In addition to the effects described in the subsections below, the pragmas have the effect of changing the initiali- |
zation value to TRUE for the corresponding constant objects. |

If unit LIBRARY_PRAGMAS is modificd and compiled by the user, it must be compiled before any other user |
compilation unit. If it is not, the program will be erroneous, |

Note that while these pragmas apply to an entire program library, it is possible to create more than one pro- |
gram iiorary (via the Ada PLU commard create/root; see Chapter 3), with each library having these pragmas |
specified or not according to user desire. |

F32. Pragma NO_DYNAMIC_OBJECTS_OR_VALUES_USED |

This pragma works on a program library basis. See the subsection at the beginning of this section for how such |
pragmas are used. |

Use of this pragma inforius the compiler that all created objects and all computed values have statically known |
sizes. The language usages that do not meet this assertion are]

e TIMAGE for integer types |

e arrays objects or values of (sub)types with non-static index constraints, or with component subtypes |
with non-static index constraints |

e array aggregates of an unconstrained type |
e catenations (even with statically sized operands) |
e collections with non-static sizes |
Programs that violate the assertion of this pragma are erroneous, [
The effect of this pragma is to use a different, and more efficient, set of compiler protocols for runtime stack |

organization and register usage. These variant protocols are described in Appendix P. i

F33. Pragma NO_DYNAMIC_MULTIDIMENSIONAL_ARRAYS_USED ‘

. This pragma works on a program library basis. Sce thesubsection-at the beginning of this sectionfor-how-such——————
pragmas are used. ‘
Use of this pragma informs the compiler that all declarations of multidimensional array, types or objects have
static index constraints [Ada RM 4.9 (11)], and that the component subtypes of such arrays; if arrays them-
selves, also have static index constraints. That is, all multidimensional arrays have statically known size. Pro-
grams that violate the assertion of this pragma are erroneous.

Tre - -
s

The etfect of this pragma is to use a special tecchnique, known as bias vectors, in the generated code for the cal-
culation of array indexed component offscts for multi-dimensional arrays. This tcchnique involves building a
data structure that contains some precomputed offsets, and then indexing into that structure. The major advan-
tage of this technique is that few or no multiplication operations necd be generated.

e

F-8 Appendix F of the Ada Reference Manual

The bias vector data structures are allocated as part of elaboration of the constrained array subtype declaration
(or object declaration that implicitly declares such a subtype).

Bias vectors are not used if the array index base type is LONG_INTEGER or if pragma PACK applies to the
array.

F3.4. Pragmas ESTABLISH_OPTIMIZED REFERENCE and ASSUME_OPTIMIZED_REFERENCE

These pragmas are used to direct the compiler to generate code that more efficiently references objects in a
package. This efficiency is achieved by using a base register to address the package objects.

Pragma ESTABLISH_OPTIMIZED_REFERENCE instructs the compiler to load a base register with the
beginning address of the objects in the designated package, and to access such objects using the base register.
The pragma has the form

pragma ESTABLISH_OPTIMIZED REFERENCE (package_name);

The pragma may appear anywhere within a program unit; the load and subsequent usage of the base register
will begin at the point of the pragma appearance. The pragma applies only to the program unit it appears in; it
does not apply to program units nested within that unit.

Pragma ASSUME_OPTIMIZED_REFERENCE instructs the compiler to assume that the designated
package’s beginning address has been loaded into a base register, and to access such objects using the base
register. The pragma has the form

pragma ASSUME_OPTIMIZED REFERENCE (package name);

The pragma should appear at the beginning of the declarative part of a program unit. The pragma applies only
to the program unit it appears in; it does not apply to program units nested within that unit. It is not necessary
to use this pragma after an instance of pragma ESTABLISH_OPTIMIZED REFERENCE; rather, it must be
used in program units that are called from the |unit that contains the pragma
ESTABLISH_OPTIMIZED REFERENCE. If there are intervening (in terms of calls) units between the unit
containing pragma ESTABLISH OPTIMIZED _REFERENCE and the unit desiring to use pragma
ASSUME_OPTIMIZED _ REFERENCE, then those iatervening units must also use pragma
ASSUME _ OPTI\{IZED “"REFERENCE.

The pragmas apply only to packages that are library units. Only the objects in the specification part of the
package, and within base register range of the package beginning, are accessed by base register.

- Only one base register is used by these pragmas, that beingregister-12. Thus, the pragmas can be in cilect for

only one package at any given time during exccution. .

An example of the use of these pragmas: N

package GLOBAL_VARS is

8

end GLOBAL _VARS;

with GLOBAL_VARS; use GLOBAL_VARS;
procedure P is
pragma ESTABLISH_OPTIMIZED _REFERENCE (GLOBAL_VARS);

- -

Appendix F of the Ada Reference Manual F-9

procedure INNER is
pragma ASSUME_OPTIMIZED_REFERENCE (GLOBAL_VARS);
begin

end [NNER;
begin

[NNER;

erd P;

F335. Pragma INTERFACE_SPELLING |

This pragma is used to define the external name of a subprogram written in another language, if that external |
name is different from the subprogram name (if the names are the same, the pragma is not needed). The |
pragma has the form [

pragma INTERFACE_SPELLING (subprogram_name, external_name_string_literal);

The pragma should appear after the pragma INTERFACE for the subprogram. This pragma is useful in cases |
where the desired external name contains characters that are not valid in Ada identifiers. For example,]

procedure CONNECT_BUS (SIGNAL : INTEGER);
pragma [NTERFACE (ASSEMBLY, CONNECT_BUS);
pragma INTERFACE_SPELLING (CONNECT_BUS, “'SCONNECT.BUS“);

F3.6. Pragma SET_MACHINE_OVERFLOWS_FALSE_FOR_ANONYMOUS_FIXED |

This pragma works on a program library basis. See the subsection at the beginning of this section for how such |
pragmas are used. |

The effect of this pragma is that any fixed point type T of anonymous predefined fired type (i.c., represented in |
16 bits) has the attribute |

TMACHINE OVERFLOWS = FALSE

such that NUMERIC_ERROR is not raised in overflow situations [Ada RM 4.5.7 (7)]. |

The result of operations in overflow situations is either the lower or upper bound of the "virtual" predefined |

. type for T ([Ada RM 3.5.9 (10}], this document Section F.1), depending on the direction of .overflow. These—f————
bounds are -32_768 * T'SMALL and 32_767 * T'SMALL respectively. These bounds will cqual TFIRST and |
T'LAST if the range constraint for T is so > declared. s) |

Note that this implementation of fixed point types relics on the 1750A fixed point overflow interrupt being |
enabled and not masked; any user exit or customization routines in the Ada runtime executive must not do |
differently.) [

e .

th

-

F-10 Appendix F of the Ada Reference Manual

F3.7. Pragma SUBPROGRAM_SPELLING

This pragma is uscd to define the external name of an Ada subprogram. Normally such names are compiler-
generated, based on the program library unit number. The pragma has the form

pragma SUBPROGRAM_SPELLING (subprogram_name (,external_name_string_literal]);

The pragma is allowed wherever a pragma INTERFACE would be allowed for the subprogram. If the second
argument is omitted, the subprogram name is used as the external name.

This pragma is useful in cases where the subprogram is to be referenced from another language.

F.4. Implementation-dependent Attributes

None are defined.

F.5. Package SYSTEM

The specification of package SYSTEM is:

package SYSTEM is

type ADDRESS is new INTEGER;

ADDRESS NULL : constant ADDRESS : = 0;

ADDRESS ZERO : constant ADDRESS := 0;

type NAME is (MIL_STD_1750A);

SYSTEM_NAME : constant NAME := MIL_STD_1750A;

STORAGE_UNIT : constant 1= 16;

MEMORY SIZE : constant : = 64 * 1024,

MIN_INT :constant ;= -2 147 483 647-1;

MAX INT :constant ;= 2 147 483 647,

MAX_DIGITS :constant := 9;

MAX MANTISSA : constant := 31;

FINE_DELTA :constant 1= 1.0 / 2.0 ** MAX_MANTISSA;
—TTICX— a ““"reemstant:= 000D _O0TO; T T

subtype PRIORITY is INTEGER range 0.255; -

-

type INTERFACE_LANGUAGE is (ASSEMBLY, BIF, JOVIAL, FORTRAN);

end SYSTEM; ~ .

.

e

Appendix F of the Ada Reference Manual F-11

F.6. Representation Clauses

In general, no representation clauses may be given for a derived type. The representation clauses that are
accepted for non-derived types are described by the following:

Length Clause

The compiler accepts three kinds of length clauses, specifying the number of storage units to be reserved for a
collection (attributz designator STORAGE_SIZE), the number of storage units to be reserved for an activation

of a task (STORAGE_SIZE), or the small for a fixed point type (SMALL). Length clauses specifying object |
size for a type (SIZE) are not allowed.

Enumeration Representation Clause

Enumeration representation clauses may only specify representations in the range of the predefined type
INTEGER.

Record Representation Clause
In terms of allowable component clauses, record components fall into three class=s:

e integer and enumeration types that may be represented in 16 bits or less;

e statically-bounded arrays or records composed solely of the above;

o all others.
Components of the "16-bit integer/enumeration” class may be given a component ciause that specifies a storage
place at any bit offset, and for any number of bits, as long as the storage place is large enough to contain the
component and does not cross a word boundary.
Components of the "array/record of 16-bit integer/enumeration” class may be given a component clause that
specifies a storage place at any bit offset, if the size of the array/record is less than a word, or at a word offset
otherwise, and for any number of bits, as long as the storage place is large enough to contain the component

and none of the individual integer/enumeration elements of the array/record cross a word boundary.

Components of the “all others” class may only be given component clauses that specify a storage place at a word
offset, and for the number of bits normally allocated for objects of the underlying base type.

Components that do not have component clauses are allocated in storage places beginning at the aext word
boundary following the storage place of the last component in the record that has a component clause.

Ali_gnment clauses are not allowed.

-

| e

F-12 Appendix F of the Ada Reference Manual

F.7. Implementation-dependent Names for Implementation-dependent Components

None are defined.

F.8. Address Clauses

Address clauses are supported for objects that are not constants, for subprogram units, and for interrupt |
entries. Address clauses are not supported for package or task units, and in general are not supported for con- |
stant objects.

Address Clause for Objects

Address clauses for objects must be static expressions of type ADDRESS in package SYSTEM. Address
clauses for objects do not cause the object to be placed at that address, but do ensure that all references to the
object in the generated code are to that address. Thus, it is the user’s responsibility to reserve space for the
object at that address, via 1750A Linker control statements.

Type ADDRESS is a 16-bit signed integer. Thus, addresses in the memory range 16#8000#..16#FFFF# (i.e.,
the upper half of 17S0A memory) must be supplicd as negative numbers, since the positive (unsigned) interpre-
tations of those addresses are greater than ADDRESS’LAST. To illustrate:

X :INTEGER;

for X use at 16#7FFF#; --legal

Y : INTEGER;

for Y use at 16#FFFF#; --illegal

Y : INTEGER;

for Y use at -1; -- legal, equivalent to unsigned 16#FFFF#

The hexadecimal address can be retained, and user computation of the negative equivalent avoided, by use of
the following construct:

ADDR_FFFF : constant := 16# FFFF#-65536;

Y : INTEGER;
for Y use at ADDR_FFFF;

Address Clause for Subprogram Units |

Address clauses for subprograms must be static expressions of type ADDRESS in package SYSTEM. The code |
of the subprogram body will be placed at that address. There is no need for.the uscr to reserve space for the |
subprogram code via the 1750A Linker, as in the case for address clauses for objects. ..

Address Clause for Interrupt Entries

Address clauses for interrupt entries do not use type SYSTEN(Abf)RESS; rather, the address clause must be a
static integer expression in the range 0..15, naming the corresponding 1750A interrupt.

The following restrictions apply to interrupt entrics. The corresponding accept statement must have no formal
parameters and must not be part of a sclcct statement. Direct calls to the entry are not allowed. If any

Appendix F of the Ada Reference Manual F-13

exception can be raised from within the accept statement, the accept statement must include an exception
handler. The accept statement cannot include tasking or delay statements.

When the accept statement is encountered, the task is suspended. If the specified interrupt occurs, executioa of
the accept statement begins. When control reaches end of the accept statement, the special interrupt entry pro-
cessing ends, and the task continues normal execution. Control must again return to the point where the accept
statement is encountered in order for the task to be suspended again, awaiting the interrupt.

There are many more details of how interrupt entries interact with the 1750A machine state and with the Run-
time Executive. For these details, see the Ada 175@4 Runtime Executive Programmer's Guide.

F.9. Unchecked Conversion

Unchecked conversion is only allowed between values of the same size. In addition, if
UNCHECKED_CONVERSION is instantiated with an array type, that type must be statically constrained.
Note also that calls to UNCHECKED_CONVERSION-instantiated functions are always generated as inline
calls by the compiler.

F.10. Input-Output

The predefined library generic packages and packages SEQUENTIAL_IO, DIRECT _IQ, and TEXT_IO are
supplied. However, file input-output is not supported except for the standard output file. Any attempt to create
or open a file will result in USE_ERROR being raised, as will any attempt to perform operations upon the
standard input file.

TEXT _IO output operations to the standard output file are implemented as output to some visible device for a
given implementation of MIL-STD-1750A. Depending on the implementation, this may be a console, a works-
tation disk drive, simulator output, etc.

The range of the type COUNT defined in TEXT_IO is 0.. LONG_INTEGER'LAST.

The predefined library package LOW_LEVEL _IO is empty.

In addition to the predefined library units, a package STRING_OUTPUT is also included in the predefined

library. This package supplies a very small subsct of TEXT _ 1O operations to the standard output file. The
specification is:

package STRING_OUTPUT is

-~—procedure PUT (ITEM : in STRING}; — _— - -
procedure PUT_LINE (ITEM : in STRING);
procedure NEW_LINE;

end STRING_QUTPUT,; _ - -

s

By using the 'IMAGE attribute function for integer and cnumeration types, a fair amount of output can be done
using this package instead of TEXT_IO. The advantage of this is that STRING_OUTPUT is smaller than
TEXT_IO in terms of object code size, and faster in terms of execution speed.

F-14 Appendix F of the Ada Reference Manual

F.11. Other Chapter 13 Areas

The following language features, defined in {Ada RM 13], are supported by the compiler:
e representation attributes (13.7.2, 13.7.3]
e unchecked storage deallocation {13.10.1]

Note that calls to UNCHECKED_DEALLOCATION-instantiated procedures are always generated as inline |
calls by the compiler. |

Change of representation [13.6] and machine code insertions [13.8] are not supported by the compiler. Note |
that pramga INTERFACE (BIF) may be used as an alternative to machine code insertions.
F.12, Miscellaneous Implementation-dependent Characteristics
Uniunitialized Variables
There is no check to detect the use of uninitialized variables. The effect of a program that refers to the value of
an uninitialized variable is undefined. A cross-reference listing may be of use in finding such variables.
F.13. Compiler System Capacity Limitations
The following capacity limitations apply to Ada programs in the Compiler System:
e the space available for the constants of a compilation unit is 32K words;
e the space available for the static data of a compilation unit is 32K words;
¢ any single object can not exceed 32K words;
o the space available for the objects local to a subprogram or block is 32K words;
o the names of all ideatifiers, including compilation units, may not exceed the number of characters
:pfii)f-i(:d by the INPUT_LINELENGTH component in the compiler configuration file (see Section
e the physical size of a sublibrary may not exceed 16384 VAX/VMS blocks.

- Theabove timitations arc all diagnosed by thetompiler- Mostmay be circumvented straightforwardty by using
separate compilation facilities or by creating new sublibraries.

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation—dependent values,
such as the maximm length of an imput line and invalid file names. A
test that makes use of such values is identified by the extension .TST
in its file name. Actual values to be substituted are represented by
names that begin with a dollar sign. A value must be substituted for
each of these names before the test is run. The values used for this
validation are given below.

Name and Meaning Value

$BIG_ID1 <1..125 = 'A', 126 => '1'>
Identifier the size of the
maximum input line length with
varying last character.

$BIG_ID2 <1..125 => 'A', 126 => '2'>
Identifier the size of the
maximm irput line length with
varying last character.

SBIG_ID3 <l..62 => 'A', 62 => '3,
Identifier the size of the 64..126 => 'A'>
maximm input line length with
varying middle character.

$BIG_ID4 <1..62 => 'A', 63 => '4',
Identifier the size of the 64..126 => 'A'>
maximm irnput line length with
varying middle character.

$BIG_INT LIT <1..123 => '0', 124..125
An integer literal of value 298 1298 '>
with encugh leading zeroes so
that it 1is the size of the
maximum line length.

|
\

Il
\'

$BIG_REAL_LI'I‘ <1..120 => '0', 121..126
A universal real literal of '69.0E1'>
value 690.0 with enough leading
zerces to be the size of the
maximm line length.

$BIG_STRING1
A string 1literal which when
catenated with BIG_STRING2

yields the image of BIG_ID1.

$BIG_STRING2
A string 1literal which when
catenated to the ed of
BIG STRING1 yields the image of
BIG_ID1.

$BLANKS
A sequence of blanks twenty
characters 1less than the size
of the maximm line length.

SCOUNT_LAST
A universal integer literal
whose value is

TEXT TO.COUNT'LAST.

SFIEID IAST
A universal integer
literal whose value is

TEXT IO.FIELD'LAST.

$FILE_NAME WITH BAD CHARS
An external file name that
either contains irvalid
characters or 1is toco lorg.

$FILE_NAME_WITH_WILD CARD CHAR
An extermal file name that
either contains a wild card
character or is too leorg.

$GREATER THAN DURATICN
A universal real literal that
lies between DURATICN'BASE'LAST
and DURATICN'IAST or any value
in the range of DURATICN.

SGRERTER_’IHAN_HIRATICN_BASE_IASI‘
A universal real literal that is
greater than DURATICN'BASE'LAST.

$ILIFGAL EXTERMAL FILE NAME1

An external file name which
contains invalid characters.

c-2

<l => 1t
1

<1 => ",

Ill, 65 => 'l|l>

106

2 147_483_647

35

BAD FTLENAME 1

BAD FILENAME 2

131 072.0

131_072.0

ILIEGAL FILE NAME 1

, 2..64 => 'A', 65

2..63 => 'A', 64

STLIEGAL EXTERNAL FIIE NAME2
An external file name which
is too 1lorg.

SINTEGER FIRST
A universal integer 1literal
whose value 1is INTEGER'FIRST.

$INTEGER YAST
A universal integer literal
whose value is INTBEGER'IAST.

$INTEGER _IAST PIUS 1
A universal integer literal
whose value is INTEGER'IAST + 1.

$LESS_THAN_DURATICN
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESS_THAN DURATICN BASE FIRST
A universal real literal that is
less than DURATION'BRASE'FIRST.

$MAX_DIGITS
Maximum digits supported for
floating-point types.

SMAX_IN LEN
Maxinmm input line length
permitted by the implementation.

$MAX INT
A universal integer 1literal
whese value is SYSTEM.MAX INT.

SMAX_INT PLUS_1
A universal integer literal
whose value is SYSTEM.MAX INT+1.

$MAX_LEN INT BASED LITFRAL
A universal integer based
literal whcse value is 2#11%
with encucgh leading zerces in
the mantissa to be MAX IN_IEN
long.

ILLEGAL FTLE NAME 2

-32_768

32_767

32_768

-131_073.0

-131_073.0

126

2147483647

2147483648

<l..2 => '2:', 3..123 =>
'0', 124..126 => '11:'>

SMAX_LEN_REAL BASED LITERAL
A universal real based literal
whese value 1is 16:F.E: with
encugh leading zerces in the
mantissa to be MAX IN_LEN long.

SMAX_STRING LITERAL

A string 1literal of size
MAX IN_IEN, including the quote
characters.

$MIN_INT

A universal integer literal

whose value is SYSTEM.MIN _INT.

SNAME
A name of a predefined numeric
type other than FIOAT, INTEGER,
SHORT FICAT, SHORT INTEGER,
IONG_FIOAT, or LCNG_INTEGER.

$NEG_BASED INT
A based integer literal whose
highest order nonzero bit
falls in the sign bit
pesition of the representation
for SYSTEM.MAX INT.

<1..3 => '16:', 4..122 =>
'0', 123..126 => 'F.E:'>

<1 => '"', 2,.125 => 'A',
126 => Wiy

~2147483648

No_Such Type

164FFFFFFFE#

APPENDIX D

WITHI™2WN TESTS

Scme tests are withdrawn frcm the ACVC because they do not conform to
the Ada Standard. The following 28 tests had been withdrawn at the time
of validation testing for the reasons irdicated. A reference of the
form "AI-ddddd" is to an Ada Comentary.

B28003A:

E28005C:

C34004A:

C35502P:

A35902C:

C35904A:

C35904B:

C35A03E,
& R:

C37213H:

C37213J:

A basic declaraticn (line 36) wrongly follows a later
declaration.

This test requires that 'PRAGMA LIST (ON);' not appear in a
listing that has been susperded by a previcus "pragma LIST
(OFF) ;"; the Ada Standard is not clear on this peoint, and the
matter will be reviewed by the ARG.

The expression in line 168 wrongly yields a value ocutside of
the rarnge of the target type T, raising CONSTRAINT ERRCR.

Equality operators in lines 62 & 69 should be inequality
cperators.

Line 17's assigment of the nomimal upper bound of a
fixed-point type to an object of that <type raises
CCNSTRAINT ERRCR, for that value lies outside of the actual
range of the type.

The elaboration of the fixed-point subtype on line 28 wrongly
raises CCNSTRAINT ERROR, because its upper bound exceeds that
of the type.

The subtype declaration that is expected to raise
CCNSTRAINT ERRCR when its compatibility is checked against that
of various types passed as actual generic parameters, may in
fact raise NUMERIC ERRCR or CCNSTRAINT ERROR for reasons not
anticipated by the test.

These tests assume that attribute 'MANTISSA returns 0 when
arplied to a fixed-point type with a mill range, but the Ada
Standard doesn't support this assumption.

The subtype declaration of SCCNS in line 100 is wrongly
expected to raise an exception when elaborated.

The aggregate in line 451 wrongly raises OCNSTRAINT ERRCR.

D~-1

C37215C,
E, G, H:
c38102C:

C41402A:

C45332A:

C45614C:

E66001D:

A74106C,

C85018B,

C37B04B,
CC1311B:

BC3108A:

ADIAOIA:

CE2401H:

CE3208A:

Various discriminant constraints are wrongly expected
to be incampatible with type OCONS.

The fixed-point conversicn on 1line 23 wromgly raises
CONSTRAINT ERROR.

'STORAGE_SIZE is wrurgly applied to an cbject of an access
type.

The tast expects that either an expression in line 52 will
raise an exception or else MACHINE CVERFLOWS is FAISE.
However, an implementation may evaluate the expression
correctly using a type with a wider range than the base type of
the cperands, and MACHINE OVERFLOWS may still be TRUE.

REPORT.IDENT_INT has an argument of the wrong type
(LCNG_INTEGER) .

Wrongly allows either the acceptance or rejection of a
parameterless function with the same identifier as an
emmumeration 1literal; the function mst be rejected (see
Coammentary AI-~00330).

A bourd specified in a fixed-point subtype declaration

lies cutside of that calculated for the base type, raising
CONSTRAINT ERROR. Errors of this sort occur re lines 37 & 59,
142 & 143, 16 & 48, anmd 252 & 253 of the four tests,
respectively (ard possibly elsewhere).

Lines 159..168 are wrorgly expected to be illegal; they are
legal.

The declaration of subtype INT3 raises CONSTRAINT ERRCR for
implementations that select INT'SIZE to be 16 or greater.

The record aggregates in lines 105 & 117 contain the wrong
values.

This test expects that an attempt to cpen the default ocutput
file (after it was closed) with mode IN FILE raises NAME ERRCR
or USE_ERRCR; by Commentary AI-00048, MODE ERROR should be
raised.

D-2

